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Pulse Period Estimation Method Based on TOA Information

SONG Jia-ning, XU Guo-dong, DONG Li-min, XU Zhen-dong, ZHANG Zhao-xiang
(Harbin Institute of Technology, Research Center of Satellite, Harbin 150001, China)

Abstract;: Aiming at the problem of huge computation in pulsar period estimation methods, a direct pulsar
period estimation algorithm was proposed. Based on the discussion of the influence of period errors on
pulse time of arrival estimation methods, the mathematical model of the said period estimation method
using TOA information is derived. In this method, a set of photon time of arrivals(TOAs) is divided into
several segments in an equal time interval, and TOA information corresponding to each segment is
calculated using time domain methods. According to the formula of the TOA information and period
error, the Least Square method is adopted to estimate the period. A new intuitionistic criterion for the
precision of pulsar period is developed by the value of the slope of the ¢—¢ graph, which is different from
the scheme that searches the perfect period based on maximum peak principle. Theoretical analysis and
the results of experiments utilizing physical and numerical data are demonstrated that the presented pulsar
period estimation method can achieve a precise and high-resolution period from a short observation of
photon time of arrivals, which can help to realize the engineering application of X-ray pulsar navigation.
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0 Introduction

With full autonomy and uninterrupted advantages, X-ray pulsar-based navigation (XNAV) provides
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spacecralt plentiful navigation information, such as position, velocity and time, and has become one of the

(3] In the XNAV system, spacecralt receives photons emitted from

prevailing in autonomous navigation
pulsars and records the photon time of arrivals (TOAs) which is the fundamental measurement of the
navigation system. After the pulse time of arrival (TOA) is estimated from a set of observed TOAs, the
navigation measurement equation can be established for an autonomous navigation system!"®). The
accuracy of estimated TOA information mainly determines the positioning accuracy of XNAV system.
Acquiring high precise TOA in short observation time is the key to XNAV. Nowadays, TOA estimation
algorithms in the time domain are comparatively mature and can be classified into two categories, including
the Maximum Likelihood Estimation(MLE) method using TOAs""! and the phase estimation methods based
on epoch folding™. The time-domain TOA estimation methods demand a stringent signal period. For
epoch-folded methods, the quality of folded profile is affected by the period accuracy. For the MLE
method, in order to reduce the enormous computation, the TOA is estimated using the given period. Thus
an exact period is necessary to guarantee a good accuracy of the estimated TOA. Nevertheless, the period
of pulsar signals observed by spacecraft is shifting due to the doppler effect caused by spacecraft motion.
Besides, the unpredicted glitches of pulsars also have an impact on the period of pulsar signalst®’.
Therefore, spacecraft is expected to have a certain ability to estimate and correct the given period of pulsar
signals according to the received TOAs onboard.

Many researchers have studied the period estimation methods of pulsar signals. Aiming at the radio
signals measured by radio astronomy observatories, researchers proposed fast Fourier transform
algorithm'® , cyclo-period search method based on maximum correlation'’”, quick search method of pulsar
period using Lomb algorithm™* and so forth. In frequency domain methods of pulsar period estimation,
sampling frequency should be selected carefully to reduce the spectrum leakage and fence effect. What's
more, enormous computation is needed to estimate an accurate period. Aiming at pulse time of arrival
array in X-ray band, Zhang'® compared the rebuilt profile set generated by a fast folding algorithm with
the standard profile, and use the cross-correlation method to estimate pulsar period. While the
performance of Zhang's method is affected by the sampling rate and amplitudes.

In this paper, a direct pulsar period estimation algorithm is studied to reduce the complexity of the
traditional methods. We firstly discuss the influence of period errors on the estimated TOA, and then
present mathematical models of the proposed period correction algorithm. The accuracy and computational
complexity of the proposed period estimation algorithm are also analyzed by comparing with the estimation
method. Finally, the feasibility and the performance of the presented algorithm are illustrated by

experiments based on physical and numerical simulation data.

1 Period estimation method using TOA information

1.1 The proposed method using TOA information from epoch-folding TOA estimation algorithms

All the time tags during an observation time are folded into a single given pulse period to derive the
empirical pulsar profile in pulse delay estimation algorithms based on epoch folding. TOA is estimated by
comparing the difference between the empirical and the standard pulsar profiles. It can be seen clearly that
pulsar period errors have an influence on the process of epoch folding and the result of the estimated TOA.

Assuming a given pulsar period is P, the difference between the given pulsar period and the true
pulsar period is dP, the length of the observation time is T,, which consists of N, pulsar periods. If the
given pulsar period equals to the true one exactly, that is dP=0, each cycle is time aligned and the folded
profile has a sharp peak without any broadening. While if the given pulsar period differs from the true one
(dP+#0), the phase difference between two adjacent cycle profiles can be given by

dp— dP
P+dP
It should be pointed out that empirical profiles and dg can hardly be obtained in a single cycle due to

(@YD)

the low energy flow density of pulsars. Additionally, dP is very small, usually in the order of nanosecond.
Thus, in order to estimate TOA and correct periods, we divide a long observation time into many pieces
which contain considerable and reasonable cycles. Subsequently, the TOA of each piece is calculated by
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folding the correspondent piece into a profile. The phase difference between two pieces within time T can
be described as

P T
P+dP " P+dpP

where, dp(T)=¢(t+T)—¢(t), ¢(t) is the pulse phase(TOA) at time ¢ corresponding to a piece TOAs

dgo(T): 2)

of the whole observation time. Next, the calculated pulse phases are plotted on the ¢-¢ graph, and the
slope &, can be estimated by the least square method. The equation of %, and period errors is

_ap
“ T (PHdP)’

where dP is the positive real root of the above quadratic equation. On account of dP<{P, the denominator

k (3

on the right side of Eq. (3) can be approximated to P? and the approximate solution can be calculated
easily.
1.2 The proposed method using TOA information from a maximum likelihood estimator

Employing the probability density function associated with the detected TOAs, a maximum-likelihood
estimator can be formulated to estimate the initial phase ¢, and the unknown frequency f. The unknowns

can be found by solving the following™*

N
(g0 + )= arg max S In[B+ah (g0 + (1, — 1) )] 4
=1

where (8, a are the known effective background rate and source arrival rate respectively. h ( + ) is the

standard periodic pulsar profile and usually defined on the phase interval ¢& [0,1) (cycle). Furthermore,
1

the function A (@) is non-negative and normalized according toJ h(p)de =1, and minh (¢) =0. As for
0

the periodical pulsar signal, there is h (¢) =h(p+n), where n is a positive integer.
Using the given pulsar period to calculate the frequency in Eq. (4), the two-dimensional parameter
estimation problem degenerates into a one-dimensional phase estimation problem. Period errors influence

the result of estimated phases with time continuing, showing as follows

N
@0 = arg max > In[B+ah (g + (1 — 1) (fus +df)) ]=
i=1

N
arg malen[18+ah([$00 + (& —to)df ]+ (i — ) fre) ]
i—1

where, f. is the reference frequency corresponding to the given pulsar period P, df is the error of the f.
relative to the true frequency of the pulsar signal. Comparing Eq. (5) to Eq. (4), it is clear to see that the

df has a linear impact on the estimated phase with time ¢ increasing

A

() =@+ (t—t,Hdf (6)
Similarly, by plotting the ¢-¢ graph and calculating the slope k., , where k,, =df. The period error can be
expressed as

1

dP=P

(7

2  Accuracy and computational complexity analysis

The proposed period estimation method can be implemented as follows: firstly, a set of photon arrival

time series is segmented , illustrating in Fig. 1, where , T, is the time length of each segment , T, is the

The recorded
photon time series #,

C
~C

Fig. 1 Schematic diagram of data grouping
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time interval of the neighboring segment, and n is the total number of all segments. Next, the TOA of
each segment is estimated in time domain by using the given pulsar period P. Finally, the period is
corrected by calculating the slope of the ¢-¢ graph and Eq. (3) or (7).

2.1 Accuracy analysis

From the above process, the accuracy of the proposed method is affected by TOA estimation methods,
parameters T, and T,. The parameter T, reflects the signal accumulative time of the process of the TOA
estimating and has a direct influence on the accuracy of TOA information according to Ref. [14]. There is
an inversely proportional function of the accumulative time T, and the theoretical standard deviation
3¢ (T,) based on different TOA estimators, including a Nonlinear Least-Squares (NLS) estimator, a
Cross Correlation (CC) estimator, and a Maximum Likelihood (ML) estimator.

We now take a CC estimator as an example to discuss the precision of the proposed method in theory.
According to Eq. (2), it follows that if the parameter T,, is too small, there will be dp(T,, )<(8¢(T,). In
that case, dgp (T, ) is submerged in 8¢ (T,) and the phase difference between two neighboring segments
cannot reflect the phase bias caused by period errors. Hence we have the following restriction: parameters
T, and T, should meet dp (T, ) >8¢(t,) to make sure dp (T, ) can be detected. While if we use many
segments to estimate phases and calculate period errors, the above restriction can be loosened by

dp(T,) » n=>8¢(T,) (8)
where n is the number of segments. With the help of Eq. (2), we can show Eq. (8) clearly. The left side of
Eq. (8) can be expressed as

= dP . T]” L
P+dP ' P+dP

Eq. (9) shows that increasing the number of segments is equal to enlarge the parameter T, in some sense.

de(T,) *n

n=de(T, *n) 9

It can also be explained by the simulating results of Fig. 2. Where three or four points correspond to the
same TOA value(y axis), looking like ‘footsteps’. These ‘footsteps’ are caused by de (T, ) <3¢ (T,).
While the number of segments is large enough and the parameters are satisfied to Eq. (8), the slope &,
still can be obtained.

Combining Eq. (8) and (2), the resolution of the estimated period in theory §P is defined as
d¢(T,) * P?

Tons

Next, we turn to study the precision of the proposed method in the aspect of the numerical solution

SP= (10)

method. Let N, be the number of folding ‘bins” in CC and NLS estimators. If we expect to distinguish the
phase bias among two neighboring segments from epoch-folded estimation methods, there should be dg
(T,)>N,"'. Actually, the above restriction is too strong and can be loosened by

de(T, ) » n>1/N, an
The Eq. (11) illustrates that the phase bias between the last and the first segment of an observation time
T, should be greater than the estimated TOA resolution. Combining Eqs. (11) and (2), we have another
theoretical resolution of the estimated period §P,
P
T N,

The same conclusion can also be given when a ML estimator is utilized to estimate TOA. The phase

0P~

(12)

resolution of a ML estimator is determined by the search step noted as ‘S, ’. Therefore substituting
‘Sae”” for ‘1/N,” in Eq. (12), we have a P based on a ML phase estimator

2

P
SPN Tobs

By Eqgs. (10), (12) and (13), the theoretical resolution of the estimated period §P of the proposed method

° Sstep ( 1 3 )

can be presented as

_ d¢(T,) « P* P* L P .
5P max( T TN, or T Sml,> (14)

From Eq. (14), the estimated period P is determined by the max of dg(T,,) and 1/N,(or S,,). If we let

1/N, be 0. 001 and dp(T, )<<0.001(cycle) s, the 8P of a millisecond pulsar during 1000s observation time

will be in the order of nanosecond. For most TOA estimation methods, the accuracy of the estimated TOA
0532002-4
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is better than 0. 001(cycle). Thus the proposed method can have a good period estimation with less demand
on the accuracy of TOA information from the above evaluation. It also should be pointed out that the
period error is closer to the theoretical resolution of the estimated period, the accuracy of the proposed
method is worse. This is because during an observation time T,,, , the phase bias caused by period errors is
limited and the effective number of estimated phases corresponding to different segments becomes small.
Noting that the time derivative of pulsar barycentric rotation frequency is not taken into account in our
method. While in the actual situations, the periods of pulsar signals decrease with the increasing time. For
example, the time derivative of Crab pulsar frequency is about 1 X107 ' Hz/s and the frequency will have a
1X1077 Hz shift during 1 000 s observation time. In that case, if the period error dp is over lns, the
changed frequency caused by period error will be —9X10" " Hz and the period error can be obtained by our
method. Otherwise, our method will not work well because the changed frequency caused by the period

error is submerged in the frequency shift. Fortunately, for most pulsars, the time derivative of pulsar
15]

frequency is in the order of 1 X10 " Hz/s or smaller* Hence, the time derivative of pulsar frequency
has a very small impact on the proposed method.
2.2 Discussion about selecting parameters T, , T,, and n

Now considering the influence of the parameters T, and n on the estimated k,,, the estimated error

variance of £, from the least square method can be given"'"

n

D) (x—Ex))’
i=1

var (k,, )= g (15)

where, ¢;~N(b+k,,x;:6")s 6=0¢(T,) and ;=i + T,. The relationship between parameters T,, T, ,
n, and T, can be approximated by

T,+tn+T,~=T,, (16
The inversely proportional function of 8¢(T,) and T, can be expressed as''"’

1 ..
1 J/\(go)/lz(go)dgp 1
Sp(T,)= s T = A (1n

b ([dg)

1 .
0/1(50)/12 (@)de

where A = J - By substituting Egs. (16) and (17) into (15), we have
(JA (p)dg)

7 .

AZ

[8p(T,) T’ B 12() _ 12

Z{T Z’I'li’[mr T\(n—nn+1)  a[T,(Te.—T,) 7
1”1—7

i=1

n

(18)

var (k,, ) =

In order to acquire an accurate k,, s we choose the parameters T,, T, and n to make the Eq. (18) be as
small as possible. Usually, if period errors and the chosen T, are so large that the folded profile has a
gross distortion, the peak of the folded profile gradually degenerates, which has an adverse impact on TOA
estimation. Therefore, we may try different parameter combinations before finding a proper one
sometimes. Some proper parameter combinations are given in the following experiments.
2.3 Computational complexity analysis

The computational complexity of the proposed period estimation is mainly determined by the TOA
estimators. The computational costs for epoch folding, CC estimator, NLS estimator and ML estimator
have been studied by Emadzadeh Amir Abbas and Speyer Jason in Ref. [14]. Here we list their results in
Table 1, as well as the computational cost of the Least Square method.

In Table 1, N,is the number of search grids in the interval (0,1) cycle and M is the total photon
number. For the proposed method, n times TOA calculation are needed to obtain the TOA information.
From Eq. (3), we can see two multiplications and one division are needed for computing the slope %,,.

From Eq. (7), one addition, one subtraction and two divisions are needed.
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Table 1 Computational costs for TOA estimation and epoch folding

Ttem Additions Subtractions Multiplications Divisions
Epoch folding N,(N,—1) N/A N/A 2N,
CC estimator N,(N,—1) + (N,—1) N, N/A N,N, 2N, + 1
NLS estimator N,(N,—1) + N,N, N,N, N,N, 2N,
ML estimator M + 4MN, N/A 2MN, N/A
Least Squre method 5(n—1) 2 5(n + 1D 3

Now we construct the cost function of the traditional y° period estimation method to make a
comparison. In y* estimation method, different test periods are utilized to fold a profile and the index
function y*= 2%, (m; —m)*"""'. Where m; is the number of photons in the jth bin and m is the mean
number of photons in the folded profile. Hence. the total computational cost of one time y° estimation
method is the sum of the epoch folding cost function and (N, — 1) additions, N, subtractions, N,
multiplications and one division.

For ease of comparison and notations, let N, be equal to N,. Substitute [T,/P ] and T,(a+p) for N,
and M respectively, the computation cost results are shown in Table 2.

Table 2 Computational cost for TOA estimation and epoch folding

Period estimation method Additions Subtractions Multiplications Divisions
The Using CC n([T,/P]+N,—2)N,+5(n—1) 2 n(N;+5)+7 n(2N,+1)+4
proposed Using NLS ([ T,/P]J+N,—1)N,+5(n—1) nNj +2 n(Nj+5)+7 n(2N,+1)+4
method  Using ML 2T, (a8 (4/Suy+1)+5(n—1)+1 3 2T, () /Sug +5(nt1) 5
x estimation method n, ([ Tos/PIN,—1) n.N, n.N, n, (2N,+1)

Where n, is the number of Xz estimation method times for searching the accurate period, and n, is
determined by the searching interval and searching step. Usually, n, is in the order of hundred or
thousand. n is relatively small and could be about one hundred. Thus, the computational cost of the
proposed method using CC or NLS estimator is less than the computational cost of y* estimation method.
Since the amount of calculations for the proposed method using ML estimator significantly increases as the
number of photons T, (a+p) becomes longer. Hence, when we using a ML estimator to calculate TOA
information for the proposed method T, is set to be not very large, which is consist with the conclusion in
Section 2. 2. And compared to the y° estimation method case, it is hard to say which one need more
calculations. Because the amount of calculation for the proposed method using ML estimators and y*

estimation method is affected by different parameters.

3 Experiments and performance

In this section, the physical simulation data of the ground X-ray source and MCP detectors and the
numerical simulation data based on Crab pulsar parameters are utilized to verify the feasibility and
performance of the proposed method.

3.1 Experiment one

Experiments using the physical simulation data can reflect the actual stimulating situation and help to
improve the physical simulation system. The data from the ground X-ray source and MCP detectors is
given in column, showing photon time of arrivals recorded by MCP detectors. The file also provides the
period of pulsar signals used to experiments, with 33. 4 ms. As experimenters illustrate that the X-ray
source and MCP detectors don’t move during tests, the estimated phase of each segment picked up from
the entire TOAs will fluctuate around a constant if the given pulsar period is exact. Otherwise, estimated
phases change with time increasing and the slope k,, of the ¢-# graph is not equal to zero.

In accordance with the above discuss, we first divide TOAs into segments as indicated in Fig. 1. Then
the given pulsar period P=33. 4 ms is adopted to estimate TOA of each segment based on a CC estimator
and a ML estimator. In order to acquire a suitable TOA precision, let T, and T, be 200 s and 7 s
respectively. The N, of the CC estimator and S, of the ML estimator are set to be 1 024 and 0. 001
respectively. T, , the total length of the TOAs is 997 s. The analysis results see in Fig. 2. The amount
operations for the proposed method using CC and ML estimators are 8. 23 X 10® and 4. 26 X 10"
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respectively. If we use the above parameters to search period by y’ estimation method, 3. 06 X 10" n,
calculations are needed. It is clear to see that only when #n, is equal to 27, the computational cost of »*
estimation method is same with the proposed method based on CC estimator. However, it is quite difficult
for n, to be so small in most cases. And there is the same computational cost with the proposed method
based on ML estimator when 7, equals to 1 395.

By Fig. 2, the slope &, is a non-zero constant, which means the given pulsar period has period errors.
Slopes for the CC estimator and the ML estimator are calculated using Least Square method, with
—3.3959X107° s~ " and —3.3855X10 7 s ', respectively. Correspondent period errors according to Eqgs.
(3) and (7) are —37. 883 6 ns and —37. 766 8 ns. As we do not have the exact pulsar period from the
physical simulation system, we fold all the TOAs data into a profile using the given period and the
calibrated period for comparison. It is apparent from Fig. 3 that folded profiles using the corrected period
have a higher peak than the folded profile using the given period. Hence the corrected period is regarded as
a more accurate one in common sense. It is also noticed that a constant phase difference exists between the
CC estimator and the ML estimator in Fig. 2. We guess this is because of different data processing
procedures. Here we only care about the slopes of the graph and the phase difference doesn’t impact the

slope estimation. So we do not analyze this phenomenon in detail.

0.655F T 7000 - -
cC — —~ Reference period
0.650 6000 cC
0645 I @ 5000 [ MLE
=
L =
S 0640 2 4000 |
© 0635} g
a £ 3000 |
0.630 =
2000
0.625 k
0.620 T T : ! ! | Il 1000 J‘(' ‘\
0 100 200 300 400 500 600 700 0 01 02 03 04 05 06 0.7 08 09 1.0
Time #/s TOA ¢
Fig.2 The ¢-¢ graph Fig. 3 Contrast figure of folded profiles

Similarly, analysis with another group of physical simulation data in low signal-to-radio (SNR) is
executed. The total length of this group is 2 042 s. Let T, and T, be 200 s and 7 s respectively. Slopes of
¢-t graphs in Fig. 4 are —1.5856X10 ° s ' and —1.5889X10 s ' corresponding to the CC estimator and
the ML estimator, respectively. And period errors from Eq. (3) and (7) are —17. 688 0 ns(CC estimator)
and —17.725 4 ns(ML estimator) respectively. Fig. 5 also illustrates the comparison of folded profiles
using different pulsar periods. From this group analysis, it can be concluded that the proposed period

estimation method can calculate period errors even though the observation has a low SNR.

0.675 T T T T T T . T n 350 T - - T .
| —CC | — — ~ Reference period
0.670 300 |
0.665 | . 250
0.660 g
C 3 200t
g 0653 e
0.650 | E I
=
0.645 100
0.640 | 5ol
0635 ——4—+ 4 | | | | 0
0 200 400 600 800 1000 1200 1400 1600 1800 0 01 0203 04 05 06 07 08 09 1.0
Time #/ns Phase ¢
Fig.4 The ¢-¢ graph in low SNR Fig.5 Contrast figure of folded profiles in low SNR

The reason why there are period errors in physical simulation experiments is mainly because of the
system noise when X-ray source generates pulsar signals and clock errors when MCP detectors record the
arrival time of photons. The period error is not expected in the physical simulation system. Since it has a
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negative influence on testing TOA estimation algorithms and other experiments based on the generated
data. Therefore, it is necessary to correct the period error to guarantee a reliable and accurate period for
further use.

3.2 Experiment two

In this experiment, the RXTE observation data'® is utilized to simulate photon Time Of Arrivals
(TOAs) in order to investigate the accuracy of the proposed method. By analyzing the data package FS_
b36a20f-b36acab of Crab pulsar observed by RXTE, we have the ratio of the effective background rate and
source arrival rate, about 9 ¢ 1. And the event of TOAs can be demonstrated by a non-homogeneous
Poisson process. By setting the exact pulsar period be 33. 4 ms, a two-thousand-second TOAs observation
is generated, with the effective background and source arrival rates at 450 photons/s and 50 photons/s
respectively.

The experiment is carried out as follows: let 1, =50 s and T, =19 s. Firstly, the TOA of each
segment is calculated over 100 Monte Carlo trails. The Root Mean Squared error (RMS) of TOA by CC
and ML estimators are evaluated as 9. 817X 10 " cycle and 8. 652X 10" cycle respectively. Secondly, the
above RMS is used to calculate the theoretical resolution of the estimated period by Eq. (9), with the
results of 0. 55 ns (CC estimator) and 0. 48 ns (ML estimator). While taking into account the N, and S,
that are chosen to be 1 024 and 0. 001 in these two estimators, theoretical resolutions of the estimated
period corresponding to CC and ML estimators should be 0. 55 ns and 0. 56 ns according to Eq. (14),
respectively. Thirdly, different period errors, including 0.8 ns, 1 ns, 10 ns, 0.1 us, and 1 ps, are added
to the exact period(33. 4 ms) to re-estimate the TOA of all segments. In order to reduce the computation,
we only use CC estimator to estimate TOA. Finally, slopes of ¢-# graphs are computed using Least Square
method, and the corrected periods are calculated according to Equation (3).

Fig. 6 shows different ¢-z graphs of various period errors. Considering the integer part of the
estimated phase, we redefine ¢ on the phase interval o€ [0, +c0) (cycle). With dP increasing, the linear
relationship becomes apparent and the absolute value of the slope k,., increases gradually . In Fig. 6(a)
and (b), as dP is small and 8¢ (T,) is relatively large, the linear function between ¢ and ¢ is not obvious,
which agrees with the analysis in Section 2. Fig. 7 compares the folded profiles using the different periods.
Table 3 also shows the statics of period errors over 100 Monte Carlo trials. The RMS of different periods
0.788 0.790

0.788
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Fig. 6 ¢-t graphs in different period errors
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displayed in Table 3 is in the same order with 2200 F ~Exact peri(;d
about 0. 35 ns and does not affect by the value of 2000 | —4P=0-8ns
. . . --dP=1Ins
period errors. The results of this experiment show 1800 | ~—dP=10ns |
that though the period has a big error, making the ——dP=100ns ]

1600 F __dp=1000ns

folded profile a serious distortion, the proposed

period estimation method is able to calculate

Photons/counts

periods in a quick and direct manner.

It should be commented that an iteration

algorithm can be developed to acquire a more

0 01 02 03 04 05 06 07 08 09 1.0
Phase ¢

precise estimated period in the further studies since
there are some approximations in the data process.
The iteration algorithm can be designed as follows: Fig. 7 Folded profiles in different periods

Table 3 Statics results of the period error estimation

Theoretical estimated period error/ns  Mean/ns RMS/ns Percentage of RMS

0.8 0.811 0. 350 43.75%
1 1.017 0. 342 34.2%
10 10.001 0. 347 0.35%
100 100 0. 347 0.035%
1 000 1 000 0. 345 0.0035%

the said method is first to execute to calculate a new period, then using the new period we do the same
procedure again based on the said method. When the difference between the new period and the last one

reaches the threshold that we set, the iteration algorithm stops.

4 Conclusion

In this paper, we demonstrate a pulsar period estimation method based on TOA information. The
proposed method established the formula between period errors and estimated phases of each segment from
a set of TOAs. The main contribution of the proposed method is to provide a direct method to estimate
periods in the time domain with a new criterion for the precision of pulsar period. It is totally different
from other period estimation methods in frequency domain or methods that search the perfect period based
on maximum peak principle. The proposed method can estimate period in the order of nanosecond from a
hundred seconds of observation time. Using the simulating data with a photon arrival rate 500 photons/s
and total observation time 2 000 s, the proposed method has a theoretical resolution of the estimated period
at 0. 6ns, estimating the period at 0. 8 ns successfully. The proposed pulsar period estimation method can
help to improve the ground physical simulation system and be applied in engineering.

References
[1] MITCHELL J W, WOOD K S, LITCHFORD R J, et al. SEXTANT - station explorer for X-ray timing and navigation

technology[ C]. AIAA Guidance, Navigation, and Control Conference, 2015.

[2] LUI Xiu-ping, JING Jun-feng, SUN Hai-feng, et al. Denoising of X-ray pulsar signal based on wavelet-Fisz

transformation[ J |. Acta Photonica Sinica s 2014, 43(12): 1204001.

[3] WANG Yi-di, ZHENG Wei, SUN Shou-ming, et al. X-ray pulsar-based navigation using time-differenced measurement

[J]. Aerospace Science and Technology, 2014, 36; 27-35.

[4] SHEIKH S 1. The use of variable celestial X-ray source for spacecraft navigation [ D]. Department of Aerospace

Engineering University of Maryland, 2005.

[5] WINTERNITZL M B, MITCHELL ] W, HASSOUNEH M A, e al. SEXTANT X-ray pulsar navigation

demonstration: flight system and test results| C]. IEEE Aerospace Conference, 2016.

[6] FENG Dong-zhu, GUO He-he, WANG Xin, et al. Autonomous orbit determination and its error analysis for deep space

using X-ray pulsar[J]. Aerospace Science and Technology, 2014, 32(1): 35-41.

[7] ANDERSON K D, PINES D J, SHEIKH S 1. Validation of pulsar phase tracking for spacecraft navigation[J]. Jowrnal

of Guidance » Control, and Dynamics, 2015, 38(10) . 1885-1897.

[8] EMADZADEH A A, SPEYER J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on

Signal Processing , 2010, 58(9); 4484-4495.

[9] SUN Hai-feng, BAO Wei-min, FANG Hai-yan, et al. Effect of stability of X-ray pulsar profiles on range measurement

0532002-9



T % iR

(10]
[11]

[12]

[13]

(14]
[15]

[16]

[17]
(18]

accuracy in X-ray pulsar navigation[ J]. Acta Physica Sinica, 2014, 63(06); 441-448.
BURNS W R, CLARK B G. Pulsar search technology[J]. Astronomy and Astrophysics, 1969, (02): 280-287.
LI Jian-xun, KE Xi-zheng, ZHAO Bao-sheng. A new time-domain estimation method for period of pulsars[J]. Acta
Physica Sinica, 2012, 61(06); 537-543.
ZHOU Qing-yong, JI Jian-feng, REN Hong-fei. Quick search algorithm of X-ray pulsar period based on unevenly
spaced timing datal J]. Acta Physica Sinica, 2013, 62(01): 533-540.
ZHANG Xin-yuan, SHUAI Ping, HUANG Liang-wei. Profile folding distortion and period estimation for pulsar
navigation[ J]. Journal of Astronautics, 2015, 36(09): 1056-1060.
EMADZADEH A A, SPEYER J L. Navigation in Space by X-ray Pulsars[ M]. New York: Springer, 2011,
ATNF Pulsar Catalogue Version 1. 55 DB/OL]. 2016-11-14 [2017-01-20]. http://www. atnf. csiro. au/research/
pulsar/psrcat/
XU Guo-dong, SONG Jia-ning, LI Peng-fei. Pulsar navigation adaptive filtering algorithm based on information quality
[J]. Optics and Precision Engineering , 2015, 23(3). 827-837.
MAO Yue. Research on X-ray pulsar navigation algorithms[D]. PLA Information Engineering University, 2009.
NASA HEASARC FTP. 40805-01-05-000[ DB/OL]. 2012 [2016-08-01]. http://heasarc. gsfc. nasa. gov/FTP/rxte/
data/archive/ AO4/P40805/40805-01-05-000.

0532002~ 10



